/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ #include "fixedint.h" #include "sha512.h" /* the K array */ static const uint64_t K[80] = { UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817) }; /* Various logical functions */ #define ROR64c(x, y) \ ( ((((x)&UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)(y)&UINT64_C(63))) | \ ((x)<<((uint64_t)(64-((y)&UINT64_C(63)))))) & UINT64_C(0xFFFFFFFFFFFFFFFF)) #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } #define LOAD64H(x, y) \ { x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \ (((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \ (((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \ (((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); } #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) ROR64c(x, n) #define R(x, n) (((x) &UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)n)) #define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39)) #define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41)) #define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7)) #define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6)) #ifndef MIN #define MIN(x, y) ( ((x)<(y))?(x):(y) ) #endif /* compress 1024-bits */ static int sha512_compress(sha512_context *md, unsigned char *buf) { uint64_t S[8], W[80], t0, t1; int i; /* copy state into S */ for (i = 0; i < 8; i++) { S[i] = md->state[i]; } /* copy the state into 1024-bits into W[0..15] */ for (i = 0; i < 16; i++) { LOAD64H(W[i], buf + (8*i)); } /* fill W[16..79] */ for (i = 16; i < 80; i++) { W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; } /* Compress */ #define RND(a,b,c,d,e,f,g,h,i) \ t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c);\ d += t0; \ h = t0 + t1; for (i = 0; i < 80; i += 8) { RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7); } #undef RND /* feedback */ for (i = 0; i < 8; i++) { md->state[i] = md->state[i] + S[i]; } return 0; } /** Initialize the hash state @param md The hash state you wish to initialize @return 0 if successful */ int sha512_init(sha512_context * md) { if (md == NULL) return 1; md->curlen = 0; md->length = 0; md->state[0] = UINT64_C(0x6a09e667f3bcc908); md->state[1] = UINT64_C(0xbb67ae8584caa73b); md->state[2] = UINT64_C(0x3c6ef372fe94f82b); md->state[3] = UINT64_C(0xa54ff53a5f1d36f1); md->state[4] = UINT64_C(0x510e527fade682d1); md->state[5] = UINT64_C(0x9b05688c2b3e6c1f); md->state[6] = UINT64_C(0x1f83d9abfb41bd6b); md->state[7] = UINT64_C(0x5be0cd19137e2179); return 0; } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return 0 if successful */ int sha512_update (sha512_context * md, const unsigned char *in, size_t inlen) { size_t n; size_t i; int err; if (md == NULL) return 1; if (in == NULL) return 1; if (md->curlen > sizeof(md->buf)) { return 1; } while (inlen > 0) { if (md->curlen == 0 && inlen >= 128) { if ((err = sha512_compress (md, (unsigned char *)in)) != 0) { return err; } md->length += 128 * 8; in += 128; inlen -= 128; } else { n = MIN(inlen, (128 - md->curlen)); for (i = 0; i < n; i++) { md->buf[i + md->curlen] = in[i]; } md->curlen += n; in += n; inlen -= n; if (md->curlen == 128) { if ((err = sha512_compress (md, md->buf)) != 0) { return err; } md->length += 8*128; md->curlen = 0; } } } return 0; } /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (64 bytes) @return 0 if successful */ int sha512_final(sha512_context * md, unsigned char *out) { int i; if (md == NULL) return 1; if (out == NULL) return 1; if (md->curlen >= sizeof(md->buf)) { return 1; } /* increase the length of the message */ md->length += md->curlen * UINT64_C(8); /* append the '1' bit */ md->buf[md->curlen++] = (unsigned char)0x80; /* if the length is currently above 112 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->curlen > 112) { while (md->curlen < 128) { md->buf[md->curlen++] = (unsigned char)0; } sha512_compress(md, md->buf); md->curlen = 0; } /* pad upto 120 bytes of zeroes * note: that from 112 to 120 is the 64 MSB of the length. We assume that you won't hash * > 2^64 bits of data... :-) */ while (md->curlen < 120) { md->buf[md->curlen++] = (unsigned char)0; } /* store length */ STORE64H(md->length, md->buf+120); sha512_compress(md, md->buf); /* copy output */ for (i = 0; i < 8; i++) { STORE64H(md->state[i], out+(8*i)); } return 0; } int sha512(const unsigned char *message, size_t message_len, unsigned char *out) { sha512_context ctx; int ret; if ((ret = sha512_init(&ctx))) return ret; if ((ret = sha512_update(&ctx, message, message_len))) return ret; if ((ret = sha512_final(&ctx, out))) return ret; return 0; }