summaryrefslogtreecommitdiffstats
path: root/src/sha512.c
blob: 62c715968aeb5791c1c15a7b67debdf3d1202240 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 */

#include "fixedint.h"

#include "common.h"
#include "libimobiledevice-glue/sha.h"

/* the K array */
static const uint64_t K[80] = {
    UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), 
    UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
    UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), 
    UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
    UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), 
    UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
    UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), 
    UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
    UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), 
    UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
    UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), 
    UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
    UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), 
    UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
    UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), 
    UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
    UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), 
    UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
    UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), 
    UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
    UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
    UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
    UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), 
    UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
    UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), 
    UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
    UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), 
    UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
    UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), 
    UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
    UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), 
    UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
    UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), 
    UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
    UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), 
    UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
    UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), 
    UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
    UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), 
    UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
};

/* Various logical functions */

#define ROR64c(x, y) \
    ( ((((x)&UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)(y)&UINT64_C(63))) | \
      ((x)<<((uint64_t)(64-((y)&UINT64_C(63)))))) & UINT64_C(0xFFFFFFFFFFFFFFFF))

#define STORE64H(x, y)                                                                     \
   { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255);     \
     (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255);     \
     (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255);     \
     (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }

#define LOAD64H(x, y)                                                      \
   { x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \
         (((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \
         (((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \
         (((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); }


#define Ch(x,y,z)       (z ^ (x & (y ^ z)))
#define Maj(x,y,z)      (((x | y) & z) | (x & y)) 
#define S(x, n)         ROR64c(x, n)
#define R(x, n)         (((x) &UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)n))
#define Sigma0(x)       (S(x, 28) ^ S(x, 34) ^ S(x, 39))
#define Sigma1(x)       (S(x, 14) ^ S(x, 18) ^ S(x, 41))
#define Gamma0(x)       (S(x, 1) ^ S(x, 8) ^ R(x, 7))
#define Gamma1(x)       (S(x, 19) ^ S(x, 61) ^ R(x, 6))
#ifndef MIN
   #define MIN(x, y) ( ((x)<(y))?(x):(y) )
#endif

/* compress 1024-bits */
static int sha512_compress(sha512_context *md, unsigned char *buf)
{
    uint64_t S[8], W[80], t0, t1;
    int i;

    /* copy state into S */
    for (i = 0; i < 8; i++) {
        S[i] = md->state[i];
    }

    /* copy the state into 1024-bits into W[0..15] */
    for (i = 0; i < 16; i++) {
        LOAD64H(W[i], buf + (8*i));
    }

    /* fill W[16..79] */
    for (i = 16; i < 80; i++) {
        W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
    }

    /* Compress */
    #define RND(a,b,c,d,e,f,g,h,i) \
    t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
    t1 = Sigma0(a) + Maj(a, b, c);\
    d += t0; \
    h  = t0 + t1;

    for (i = 0; i < 80; i += 8) {
        RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0);
        RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1);
        RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2);
        RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3);
        RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4);
        RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5);
        RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6);
        RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7);
    }

    #undef RND

    /* feedback */
    for (i = 0; i < 8; i++) {
        md->state[i] = md->state[i] + S[i];
    }

    return 0;
}


/**
   Initialize the hash state
   @param md   The hash state you wish to initialize
   @return 0 if successful
*/
int sha512_init(sha512_context * md) {
    if (md == NULL) return 1;

    md->curlen = 0;
    md->length = 0;
    md->state[0] = UINT64_C(0x6a09e667f3bcc908);
    md->state[1] = UINT64_C(0xbb67ae8584caa73b);
    md->state[2] = UINT64_C(0x3c6ef372fe94f82b);
    md->state[3] = UINT64_C(0xa54ff53a5f1d36f1);
    md->state[4] = UINT64_C(0x510e527fade682d1);
    md->state[5] = UINT64_C(0x9b05688c2b3e6c1f);
    md->state[6] = UINT64_C(0x1f83d9abfb41bd6b);
    md->state[7] = UINT64_C(0x5be0cd19137e2179);
    md->num_qwords = 8;

    return 0;
}

/**
   Process a block of memory though the hash
   @param md     The hash state
   @param data   The data to hash
   @param inlen  The length of the data (octets)
   @return 0 if successful
*/
int sha512_update (sha512_context * md, const void *data, size_t inlen)
{
    const unsigned char* in = (const unsigned char*)data;
    size_t n;
    size_t i;
    int           err;
    if (md == NULL) return 1;
    if (in == NULL) return 1;
    if (md->curlen > sizeof(md->buf)) {
       return 1;
    }
    while (inlen > 0) {
        if (md->curlen == 0 && inlen >= 128) {
           if ((err = sha512_compress (md, (unsigned char *)in)) != 0) {
              return err;
           }
           md->length += 128 * 8;
           in             += 128;
           inlen          -= 128;
        } else {
           n = MIN(inlen, (128 - md->curlen));

           for (i = 0; i < n; i++) {
            md->buf[i + md->curlen] = in[i];
           }


           md->curlen += n;
           in             += n;
           inlen          -= n;
           if (md->curlen == 128) {
              if ((err = sha512_compress (md, md->buf)) != 0) {
                 return err;
              }
              md->length += 8*128;
              md->curlen = 0;
           }
       }
    }
    return 0;
}

/**
   Terminate the hash to get the digest
   @param md  The hash state
   @param out [out] The destination of the hash (64 bytes)
   @return 0 if successful
*/
int sha512_final(sha512_context * md, unsigned char *out)
{
    int i;

    if (md == NULL) return 1;
    if (out == NULL) return 1;

    if (md->curlen >= sizeof(md->buf)) {
        return 1;
    }

    /* increase the length of the message */
    md->length += md->curlen * UINT64_C(8);

    /* append the '1' bit */
    md->buf[md->curlen++] = (unsigned char)0x80;

    /* if the length is currently above 112 bytes we append zeros
     * then compress.  Then we can fall back to padding zeros and length
     * encoding like normal.
     */
    if (md->curlen > 112) {
        while (md->curlen < 128) {
            md->buf[md->curlen++] = (unsigned char)0;
        }
        sha512_compress(md, md->buf);
        md->curlen = 0;
    }

    /* pad upto 120 bytes of zeroes 
     * note: that from 112 to 120 is the 64 MSB of the length.  We assume that you won't hash
     * > 2^64 bits of data... :-)
     */
    while (md->curlen < 120) {
        md->buf[md->curlen++] = (unsigned char)0;
    }

    /* store length */
    STORE64H(md->length, md->buf+120);
    sha512_compress(md, md->buf);

    /* copy output */
    for (i = 0; i < md->num_qwords; i++) {
        STORE64H(md->state[i], out+(8*i));
    }

    return 0;
}

int sha512(const unsigned char *message, size_t message_len, unsigned char *out)
{
    sha512_context ctx;
    int ret;
    if ((ret = sha512_init(&ctx))) return ret;
    if ((ret = sha512_update(&ctx, message, message_len))) return ret;
    if ((ret = sha512_final(&ctx, out))) return ret;
    return 0;
}

int sha384_init(sha384_context * md) {
    if (md == NULL) return 1;

    md->curlen = 0;
    md->length = 0;
    md->state[0] = UINT64_C(0xcbbb9d5dc1059ed8);
    md->state[1] = UINT64_C(0x629a292a367cd507);
    md->state[2] = UINT64_C(0x9159015a3070dd17);
    md->state[3] = UINT64_C(0x152fecd8f70e5939);
    md->state[4] = UINT64_C(0x67332667ffc00b31);
    md->state[5] = UINT64_C(0x8eb44a8768581511);
    md->state[6] = UINT64_C(0xdb0c2e0d64f98fa7);
    md->state[7] = UINT64_C(0x47b5481dbefa4fa4);
    md->num_qwords = 6;

    return 0;
}

int sha384_update(sha384_context * md, const void *data, size_t inlen)
{
    return sha512_update(md, data, inlen);
}

int sha384_final(sha384_context * md, unsigned char* out)
{
    return sha512_final(md, out);
}

int sha384(const unsigned char *message, size_t message_len, unsigned char *out)
{
    sha384_context ctx;
    int ret;
    if ((ret = sha384_init(&ctx))) return ret;
    if ((ret = sha384_update(&ctx, message, message_len))) return ret;
    if ((ret = sha384_final(&ctx, out))) return ret;
    return 0;
}